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H I G H L I G H T S

• The random distribution of fibers
and pores is simulated by Monte
Carlo method.

• The effective thermal conductivity
is calculated and the results are
presented in statistical forms.

• The numerical procedure is
programmed by APDL codes and
executed automatically.
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A B S T R A C T

Due to the high thermal-mechanical performance, ceramic matrix composite (CMC) is regarded as an
alternate material for high temperature components of aircrafts. The thermal conductivity of unidirec-
tional CMC is sensitive to its microstructural characteristics. Herein, the Monte Carlo method is introduced
to simulate the real distribution of fibers and air pores. The complete procedure is programmed by ANSYS
Parametric Design Language and executed automatically. The effective thermal conductivity of this com-
posite at room temperature is calculated. The effect of fiber arrangement as well as matrix porosity with
different fiber fractions is studied. The statistic results are gotten and both longitudinal and transverse
thermal conductivity are computed. The random arrangement of fibers can result in a deviation of trans-
verse thermal conductivity in different calculation times. The amount of air pores in matrix can also affect
thermal conductivity of this material. This method is proved to be valid and accurate by comparison of
numeric and experimental data; the relative error is less than 2%. The method can be used as an effec-
tive supplement of theoretical analysis and general FEM calculation for thermal conductivity.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Currently, a higher inlet temperature (more than 1900 K [1]) is
required for gas turbine engine in order to increase thermal efficiency

and reduce exhaust gas emission [2]. However, the traditional metal
alloy (take k419 for instance, melt point: 1260~1340 °C, thermal con-
ductivity: 10.65~26.80 W·m−1 K−1 [3]) is not suitable for that high
temperature condition. Therefore it is urgent to find a new kind of
alternative material.

Advanced ceramic matrix composite (CMC) is considered as a
kind of viable candidate materials because of its higher tempera-
ture capability and lower density compared to metal alloy [4]. Among
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those, fiber reinforced ceramic matrix composites (FRCMC) is the
most widely used CMC material [5]. When this material is used in
stator and rotor blades, there is an increase of thermal efficiency
and a decline of coolant consumption by raising turbine inlet tem-
perature [6]. As a fundamental thermal characteristic, thermal
conductivity determines the conduction capability of CMCs and is
the basis of further research on thermal performance of whole blade.

The thermal conductivity of composites is sensitive to its mi-
crostructural details [7], such as fiber volume fraction, imperfections,
porous, etc. The calculation research is attracting more attention with
the development of technology and many different methods have
been introduced. F. Gori evaluated the thermal conductivity of an
ablative composite by theoretical method with a cubic cell [8]. C.
Mahesh used finite element method to calculate the thermal con-
ductivity of FRP composites with ANSYS software [9]. Marco Dondero
applied Representative Volume Elements (RVE) and the Fast Mul-
tipole Boundary Element Method on the simulation of random
micro-heterogeneous materials [10]. Giorgio Pia introduced fractal
geometry method and heat resistance network on the computa-
tion of porous materials [11]. Ba Nghiep Nguyen brought in
molecular dynamics (MD) method for analyzing thermal conduc-
tivity of SiC/SiC composites [12].

Generalized method of cell is widely used in the calculation of
transverse thermal conductivity of unidirectional composites. It is
an ideal model and is simplified by assuming that fibers are in regular
arrangement. However, for most unidirectional FRCMC compos-
ites, the distribution of fibers over transverse cross section is usually
random [13]. The description of structural details and the efficien-
cy of numerical method is necessary for an accurate prediction [14].
Thus it is necessary to use a model that can reflect the structural
characteristics for calculation.

The Monte Carlo (MC) method with a broadened model is used
by many researchers to analyze the physical properties. T. Fiedler
used the MC method for analysis of thermal diffusion in multi-
phase materials [15]. Chen X investigated the effect of random fiber
arrangement on transverse permeability [16] as well as the distri-
bution of interface stress [17]. A. Wongsto introduced this method
to simulate the random distribution of fibers and research the me-
chanical properties on transverse cross section [13]. Zhao S Y used
MC method to analyze the uncertainties quantification of thermal
conductivity for ceramic fiber blanket [18]. This method is also used
for simulating the distribution of air pores [19] and predicting
thermal conductivity of porous media [20] as well as researching
the effect of porosity [21].

Here, the objective of this paper is to introduce this method to
calculate thermal conductivity of unidirectional FRCMCs, simulate
the real distribution of fibers and pores under different fiber frac-
tions, and research the rules and effects of microstructural
characteristics on effective thermal conductivity with statistical
information.

Herein, ANSYS Parametric Design Language (APDL) is used to
program the calculation process. A set of complete APDL com-
mands are coded for modeling, meshing, setting physical
characteristics and boundary conditions, repeated solving, and data
processing. The ANSYS Mechanical APDL software is used to execute
the pre-generated macro document and then accomplish the whole
procedure.

2. Theory

2.1. Heat conduction equation and boundary condition

For orthotropic CMC material, there are three main elements of
thermal conductivity tensor, called main thermal conductivity. The
heat conduction equation can be written as Eq. 1 [8]:
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Considering the area that heat flux passes through, the compo-
nent of heat conduction equation along main directions can be
described as:
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When thermal conductivity along x direction is to be calcu-
lated, certain boundary condition is set on the faces x = 0 and x = l,
while the other faces are set to adiabatic. There are two kinds of
boundary condition considered in this paper.
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When the first boundary condition in case 1 is used, as is ex-
pressed in Eq. 3, the heat gradient is constant; then the effective
thermal conductivity can be defined as:

Φ = − = −∫λ λdT
dy

dA A
dT
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(5)

For FEM, the boundary face is meshed according to proper grid
size. Consider the temperatures on two faces and the model length,
the equation can be represented as the following form:
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Here, ai is the area of each mesh, and qi is the heat flux density.
When boundary condition in case 2 is used, as is expressed in

Eq. 4, temperature on the face x = l is not uniform; thus, heat gra-
dient is not constant. In this case, the effective thermal conductivity
is defined as the weighted average of elements.
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The thermal conductivity of each finite element can be written
as:
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Then the effective thermal conductivity can be calculated by the
following equation:
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2.2. Existing theoretical solving equations

Several theoretic models have been proposed to predict thermal
conductivity of composites [22]. Among those, a simplified paral-
lel and series model is widely used to calculate the effective thermal
conductivity of unidirectional composites. The effective thermal con-
ductivity along two directions can be calculated by Eq. 10 and Eq.
11 [23].

λ φ λ λ φL m fL= −( ) +1 (10)
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Here, ϕ is the volume fraction of fibers, L means the direction
of longitude while T means transverse, f means fiber, and m means
matrix.

For unidirectional fiber reinforced composites, the heat conduc-
tion in longitudinal direction fits parallel model well [24]. Thus the
parallel model is used to calculate longitude results and compare
with program solved data. However, in the transverse direction, the
calculative results using series model can engender greater error;
another simplified model and the total thermal resistor network [25]
is used for theoretic analysis. The effective transverse thermal con-
ductivity can be calculated by Eq. 12.
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2.3. The Monte Carlo method

The Monte Carlo method is also called stochastic simulation
method. The approximate solution is given by calculating the sta-
tistic characteristics of parameters [26]. Assuming that the required
amount x is the mathematical expectation of a random variable ξ,
the approximate method is to repeat sampling for N times, then the
arithmetic mean value can be calculated by Eq. 13.
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In this paper, the solution procedure is executed for given sam-
pling times. After each time, a thermal conductivity result is
generated, then the average value is calculated, and it represents
the effective thermal conductivity.

3. Effect of fiber distribution

Herein, the MC method is used for simulating the real arrange-
ment of fibers. The model contains a number of fibers, which is
regarded as more realistic for analysis [17].

3.1. Modeling and solving process

The computational procedure consists three main processes, mod-
eling the simulative distribution and meshing, setting boundary
conditions and solving, and processing data. All these three pro-
cesses together can be regarded as a sampling process and will be
repeated for a given sampling times k. After each sampling time, a
value of thermal conductivity will be generated. The amount of k
should be big enough in order to get the accurate mathematical
expectation.

The whole modeling procedure is represented as a flow chart
in Fig. 1. There are some assumptions during the modeling and cal-
culation process:

1. All the fibers have the same value of diameter.
2. All the fibers are paralleled to the main axis.
3. Ignore defects in the material.

The fibers are first put regularly in the hexagonal array manner.
The positions of fibers are determined by their coordinates along
axes in cross section; here the transection face is the x–y plane. In
order to get a new distribution, it needs to generate a series of
coordinate values along x and y axes.

In this paper, fibers are perturbed for a sequence of sub-steps
in order to get a fully dispersed distribution. For a single sub-step,
each fiber moves with a minute displacement. The displacement
is generated stochastically. The coordinate for a certain fiber at the
tth sub-step is (xt, yt), then the fiber moves to a new position (xt+1,

yt+1).
The new coordinate can be presented as Eq. 14 and Eq. 15. Here,

the function random(m, n) in ANSYS APDL is used to generate a
random number between m and n.

x x random randomt t+ = + ( ) ⋅ ( )( )1 0 0 2, cos ,δ π (14)

y y random randomt t+ = + ( ) ⋅ ( )( )1 0 0 2, sin ,δ π (15)

After the generation of a new position, a judgment statement
will be taken. A value of 0.1r is used as the gap limit between two
neighbor fibers in many papers [13,17]. In this paper, the upper limit
is set to 0.05r for gaps among fibers, as well as that between fibers
and boundaries, in order to get the more real arrangement.

In this method, the distribution of fibers is determined by three
factors: displacement range δ for each shift, the sampling times t
and the volume fraction of fibers ϕ.

Fig. 1. Flowchart of MC modeling process.
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1. Given the constant value of δ and t, composites with a lower fiber
fraction are relatively easier to generate dispersive distribu-
tion. For composites with high fiber fraction, the gaps among
neighbor fibers are very narrow. Thus it is hard for fibers to move
freely without overlaps and they can only shift to the limited area
nearby. Thus the scattered effect is not obvious.

2. When t and fiber fraction ϕ are constant, the dispersion is be-
coming stronger as the increase of δ. Since the value of δ
determines the range of fibers’ displacements, a larger δ value
means there is a higher possibility for fibers to move to further
areas. Thus the distribution is more dispersive compared to the
initial regular one.

3. Keep the values of ϕ and δ as constants, it is obvious that the
distribution becomes more scattered with the growth of sub-step
times. This is because the displacements can accumulate and the
later generated positions are based on the previous ones. Thus
if the number of sub-steps is large enough, the fibers can move
to new positions far away from the original locations and then
form a distinct arrangement compared to the ideal model [13].

In this paper, δ = 0.1r and t = 200 are set in the process of cal-
culation. Since the total time spent is increasing with the growth
of t and k. This is a compromise between computational accuracy
and is time consuming. The distribution of fibers is acceptable for
numeration when t is greater than or equal to 200. The fiber frac-
tion is set as a series from 20% to 70% in order to see the variations
of properties with different components ratio.

The value of calculation times k is determined by the conver-
gence of average value. As is shown in Fig. 2, the average value begins
to converge when the number of calculation times is greater than
200. Thus the value k = 200 is used to get the precise numerical
solutions.

In this paper, Cf/SiC is selected as one kind of CMCs for numer-
ical analysis. The thermal conductivities in room temperature of
carbon fiber on transverse and longitudinal directions are 4 W·m−1 K−1

and 40 W·m−1 K−1, respectively; SiC matrix is 70 W·m−1 K−1 [27].

3.2. Discussion about boundary condition

Two kinds of boundary condition are set for model with fiber
fraction of 50%. In case 1, the two boundary temperatures are set
to 1000 K and 500 K, respectively. In case 2, one face is set with fixed
temperature 1000 K, while on the other face the fluid temperature

is 500 K and a series of values for convection heat transfer coeffi-
cient h are set from 2000 W·m−2 K−1 to 210 W·m−2 K−1. The calculation
results are represented in Fig. 3.

Although the fluid temperature Tf is constant, there is a huge dif-
ference among temperatures on face 2 for each state. With the
growth of h, the temperature field on face 2 is getting more homo-
geneous, and the temperature on face 2 is approaching fluid
temperature, from 999.954 K to 500.5 K. Thus the calculation result
is approaching the data in case 1. When the value of h is big enough,
there is no difference between the results of two cases.

The boundary condition in case 1 is used for the latter calcula-
tion of thermal conductivity in this paper.

3.3. Validation

As has been discussed in section 2, the effective thermal con-
ductivity in longitudinal direction fits parallel model well. This model
and Eq. 10 are widely used as a method to validate the calculation
procedure [21]. A series of unit-cell models with fiber fraction from
20% to 70% are picked for numerical calculation, while Eq. 10 is used
for theoretical analysis. The results indicate that the relative error
between these two methods is less than 0.3%. Thus the ANSYS
software is regarded as reliable for the calculation of thermal con-
ductivity in this investigation.

Fig. 2. Convergence of mean thermal conductivity for repeated calculations.

Fig. 3. Numerical results of thermal conductivity under different boundary conditions.
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Besides, in order to validate the accuracy of this method, the
transverse thermal conductivity of composites in [28] is calcu-
lated by the MC method at various temperatures. The computed
results are compared with measured data from that paper and the-
oretic analysis by Eq. 12. The comparison results are plotted in Fig. 4.

The comparison results indicate that the numerical results cor-
respond with experimental results very well and the relative error
is less than 2%, which can prove the validity and accuracy of this
method. The accuracy of numerical results is higher than that of
theoretic results.

3.4. Results and discussion

The random arrangement of fibers leads to the irregularity in both
temperature field and heat flux density field, as is shown in Fig. 5.
Due to the huge difference of thermal conductivity between matrix
and fibers in transverse direction, heat is mainly transferred through
the channel among neighbor fibers in matrix. Thus the heat flux

density in matrix is much higher than that in fibers. In addition, the
fibers can affect the heat conduction of nearby areas in matrix. Those
portions that are close to fibers along heat transfer direction have
the lower heat flux density than the other portions in matrix.

In order to get the statistical results of distribution as shown in
Fig. 6, the model with the value ϕ = 40% and δ = 0.1r is calculated
for 1000 times. The computational results of effective thermal con-
ductivity in vertical direction are scattered in the area between
maximum and minimum values as shown in Fig. 6 (a). The offset
(the difference between maximum and minimum values) is over 2
W·m−1 K−1, while most values are scattered nearby the mean value.
And there is a decreasing possibility for values to distribute in the
area far away from the average level. A fitting curve is drawn in the
frequency count histogram. The frequency counts fit Gauss count
very well. From the cumulative count figure, it can be seen that there
are more than 90% of values located in the area of 32 ± 0.5 W·m−1 K−1.

The tendency of transverse thermal conductivity with the effect
of fiber fraction is also studied as shown in Fig. 7.

Due to the random distribution, the values of thermal conduc-
tivity are in fact in a range between maximum and minimum. With
Monte Carlo simulation and statistic result, the effect of fibers’ ar-
rangement can be noted.

Because fibers have much smaller thermal conductivity than
matrix, the total effective thermal conductivity declines when fiber
fraction increases. The deviation of maximum and minimum value
is represented in Fig. 7 as well. The random arrangement of fibers
can affect transverse thermal conductivity of this material. When
fiber fraction is relatively low, there is an obvious difference between
the maximum and minimum values; the deviation of maximum and
minimum value can be as large as 2 W·m−1 K−1. The value of offset
is less apparent with the increase of fiber fraction. This is because
there is no enough space for fibers to move and generate a dis-
persed arrangement when fibers are crowded together under high
fractions. In consequence, there are little differences of fiber ar-
rangement among different calculation times.

Fiber fraction has a negative effect on the value of transverse
thermal conductivity. When fiber fraction increases from 30% to 60%,
the value of thermal conductivity decreases 44.4%, from 35.48
W·m−1 K−1 to 19.71 W·m−1 K−1. The numerical results are compared
with theoretic results using Eq. 12. Numerical results fit theoreti-
cal data well and the error becomes much smaller with the growth
of fiber fraction.

Fig. 4. Comparison of numerical, theoretic and experimental results.

Fig. 5. Simulation results.
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4. The effect of porosity in matrix

In the process of composites fabricating, the presence of air can
lead to tiny air-filled cavities in the matrix. These pores are caused
by the mixing and consolidation of discrete components [29]. In fact,
most ceramic composites are porous [30]. As the thermal conduc-
tivity of air is far less than the thermal conductivity of matrix, the
amount of pores will affect the effective thermal conductivity of
composites [31].

The pores in the matrix can be regarded as randomly distrib-
uted. Thus Monte Carlo method is chosen to investigate the effect
of pores on composites’ thermal conductivity. The amount of pores
in materials can be evaluated as porosity. For single-fiber CMC ma-
terials, the pores mainly exist in matrix, thus the porosity of matrix
is used as a variable during the calculation process.

φpore
pore

matrix

V

V
= ∑ (16)

4.1. Calculative procedure

A unit-cell model is chosen to calculate the thermal character-
istics. Then the model is meshed in ANSYS APDL and the element
type is set to SOLID 70.

Since the pores are distributed randomly in the matrix, a certain
number of discrete elements are picked to represent these cavi-
ties. This process is achieved by the function random(min, max). Here,
min is the minimum number of elements in matrix, while max is
the maximum number. After meshing, all the elements in the matrix
have their own grid ID. So a series of random numbers without rep-
etition are generated by this function. Each number corresponds to
a pore element. The amount of selected elements n is determined
by Eq. 17.

V Vi
i

n

pore matrix
=
∑ = ×

1

φ (17)

Then the selected elements are assigned with thermal proper-
ties of air. The distribution of pores with matrix porosity 10% and
fiber fraction 50% is presented in Fig. 8. Here, the yellow elements

Fig. 6. Statistical results of thermal conductivity.

Fig. 7. Comparison of numerical results and theoretic results under different fiber
fractions.
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represent fibers, the blue elements represent matrix, and the purple
elements are air pores distributed in the matrix randomly.

After that, the calculative process is executed by given times k.
For each single process, a different pores arrangement is gener-
ated and a constant thermal boundary condition is given. After that,
the thermal conductivities in both the longitude and transverse di-
rection are calculated.

4.2. Results and discussion

For composites with the fiber fraction of 50% and matrix poros-
ity of 15%, the temperature field and heat flux density field are shown
in Fig. 9. The random distribution of pores leads to the irregularity
in both temperature field and heat flux density field. In the matrix,
there is little heat transmitted through the pores, due to the very
small value of thermal conductivity of air [25].

Fig. 8. Distribution of pores in matrix.

Fig. 9. Numerical results in transverse and longitudinal directions.
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The effect of pores’ random distribution on the deviation of
thermal conductivity in each calculation times is not obvious. The
mean effective thermal conductivity of the model with different fiber
fractions and matrix porosities is represented in Fig. 10. The value

of each point is the average of repeated simulations. For both lon-
gitudinal and transverse directions, the effective thermal conductivity
decreases with the growth of porosity in matrix. There is a 36.5%
drop of transverse thermal conductivity at most and as most as 31.8%
drop in longitudinal direction. The model with higher matrix frac-
tion, namely smaller fiber fraction, has a bigger slope of decline.
Therefore, pores have a negative effect on the effective thermal con-
ductivity of CMCs.

For a model with a fiber fraction of 50%, the comparison between
numerical results and theoretic results is listed in Table 1. The rel-
ative error between numeric and theoretic results is less than 6%.

In longitudinal simulations, the results for composites with small
porosities fit the parallel model well and the relative error is very
small. With the growth of matrix porosity, the composite struc-
ture of matrix and pores becomes more complex; the heat
conduction through matrix and pores could not been explained by
the simplified parallel model very well. Thus the error between two
methods is increasing with the growth of matrix porosity. In ad-
dition, the longitudinal results have less relative errors than
transverse data. This is because parallel model can explain longi-
tudinal heat conduction for UD CMCs very well. However, in
transverse direction, the theoretical formulas have poorer accura-
cy than in longitudinal direction.

5. Summary

1. In this paper, the Monte Carlo method is used to simulate the
real distribution of fibers and pores in matrix. A complete cal-
culative procedure is programmed by the ANSYS Parametric
Design Language and is executed automatically. The validation
of ANSYS software for thermal conductivity calculation has been
proven.

2. The accuracy of this method is validated by the comparison of
computational results and experimental data; the relative error
is less than 2%, and the accuracy is higher than that of theoret-
ic results.

3. The random arrangement of fibers can result in a deviation of
effective thermal conductivity for composites in transverse di-
rection. The influence is obvious when fiber fraction is less than
60%; the deviation of maximum and minimum value can be as
large as 2 W·m−1 K−1.

4. Fiber fraction has a negative effect on the value of transverse
thermal conductivity. When fiber fraction increases from 30% to
60%, the value of thermal conductivity decreases 44.4%, from
35.48 W·m−1 K−1 to 19.71 W·m−1 K−1.

5. The amount of air pores in matrix can also affect thermal con-
ductivity of this material. The values in both longitudinal and
transverse direction decrease with the growth of matrix poros-
ity. There is a 36.5% drop of transverse thermal conductivity at
most and as most as 31.8% drop in longitudinal direction. The
relative error between numeric and theoretic results is less
than 6%.Fig. 10. Change of thermal conductivity with porosity under different fiber fractions.

Table 1
Comparison between calculated data and theoretic data.

Porosity
(%)

Transverse results Longitudinal results

Numeric
(W·m−1 K−1)

Theoretic
(W·m−1 K−1)

Relative error
(%)

Numeric
(W·m−1 K−1)

Theoretic
(W·m−1 K−1)

Relative error
(%)

0 25.91 24.41 5.80 54.57 55.00 −0.78
5 24.76 23.38 5.56 52.72 53.25 −1.00

10 23.53 22.35 5.00 50.63 51.50 −1.69
15 21.81 21.32 2.26 48.55 49.75 −2.41
20 20.33 20.29 0.20 46.42 48.00 −3.30
25 18.94 19.25 −1.65 44.18 46.25 −4.47
30 17.54 18.22 −3.88 42.03 44.50 −5.56
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6. The implementation of this Monte Carlo method for analyzing
the thermal conductivity of unidirectional fiber reinforced CMC
has been introduced and demonstrated in this paper. The effect
of random distributed fibers and the air pores in the matrix on
effective thermal conductivity is investigated, and the effect of
fiber fraction and porosity on thermal conductivity is researched.
Depart from the unidirectional CMCs, this method also has the
guidance significance for investigating thermal conductivity of
other kinds of long unidirectional fiber reinforced composites
with different matrix phases. The method with a broadened
model can be regarded as a supplement of FEM with unit-cell
model and theoretic analysis by empirical formula for research-
ing heat conduction in transverse cross-section. For materials
lacking experimental data, this method can offer a reliable pre-
diction for thermal conductivity value.
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Nomenclature

CMC Ceramic matrix composite
FRCMC Fiber reinforced ceramic matrix composite
UD Unidirectional
MC Monte Carlo
FEM Finite element method
RVE Representative volume element
λ Thermal conductivity [W·m−1 K−1]
h Convection heat transfer coefficient [W·m−2 K−1]
λT Transverse thermal conductivity [W·m−1 K−1]
λL Longitudinal thermal conductivity [W·m−1 K−1]
ϕ Fiber fraction [%]
d Fiber diameter [μm]
r Fiber radius [μm]
δ Displacement range of each time [μm]
t Sub-step times for modeling a single distribution of fibers
k Repeat times for calculation [sampling times]
ϕpore Matrix porosity [%]
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